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Antarctica with Walgreen Coast (box)
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The Role of Pine Island Glacier
and Thwaites Glacier
in Stability Scenarios
for the West-Antarctic Ice Sheet
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Results:
ICESAt — Pine Island Glacier

• GLAS measures ice surface altimetry with
unprecedented accuracy and precision

• DEMs derived from GLAS data using
geostatistical analysis can be utilized for
elevation change detection, sufficient for
geophysical analysis

• Thinning rates in Pine Island Glacier have been
increasing

• The observed retreat of Pine Island Glacier is
attributed to internal processes in the glacier,
related to dynamic thinning

Herzfeld, McBride, Zwally, DiMarzio, 2008
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Does this trend continue?
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Change over 8 years: 2005-1995
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Change over 10 years: 2005-1995

300

200

100

0

-100

-200

-300

. – p.13



Change over 11 years 2006 (L3E) -1995
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Change over 11 years 2006 (L3F) -1995
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Change in ICESat years —
Analysis based on GLAS data only
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Change over 2 years 2005 (L3C) - 2003 (L2A)
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Change over 3 years 2006 (L3E) - 2003 (L2A)
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Change over 3 years 2006 (L3F) - 2003 (L2A)
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Change over 1 year 2006-05 (L3F) - 2005-05 (L3E)
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Seasonal Signal 2006-05 (L3F) - 2006-02 (L3E)
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Conditional Simulation:

Scale-dependent fractal fields

with natural roughness at every scale
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Role of Surface Roughness

To assess the potential of a multi-beam channel to
measure high-resolution topography, we need
information onspatial subscale roughness(ice surface
roughness at a resolution higher than that of GLAS
observations).

What is spatial surface roughness?

• a derivative of (micro)topography

→ characterization of spatial behavior
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(3.) How do we measure surface
roughness? — The GRS !
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Remote Sensing of Ice Surfaces
Data Scales of Resolution
Radar Altimetry 3 km grids
MISR 275 m or 1,000 m pixels
SAR 12.5 m pixels
ATM 7 m resolution
Videography Submeter resolution

The missing scale
THE GRS 0.2 m resolution

Material properties Microscopic scale
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GRS Data – Greenland Ice Sheet
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GRS Data – Roughness Model

GRS Data
• data in 8 or 16 channels with

across-track resolution 0.2 m
• along-track resolution≈0.1 m
• subcentimeter vertical accuracy

DEMs from GRS data
• 0.2m grids
• areas typically 25 m by 200 m to

200 m by 200 m
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Approach: Conditional Simulation of
Ice Surfaces

(1) Use GLAS DEMs as low-res boundary conditions

(2) Use GRS data (from Greenland) to derive spatial surface
roughness parameters using vario functions

(3) Derive SIMSURF model parameters:
(a) scale breaks and their resolutions
(b) at every scale range:
(b.1) fractal dimension
(b.2) direction of anisotropy
(b.3) anisotropy factor

(4) Use SIMSURF software (Herzfeld and Overbeck) to
generate ice surface

(5) Sample model data sets for SB and MB data

(6) Analyze model data sets
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The SIMFRACT method for simulation of scale-dependent
fractal surfaces with natural roughness at each scale
(A) Data analysis part

(1) Calculate scale-dependent dimensions (a - Variogram
method, b - Fourier method, c - Isarithm method)

(2) Determine homogeneity ranges of scale

(3) Determine anisotropies at each scale range

(B) Simulation part

(4) Set up a simulation network, matching scale breaks

(5) Decide on scale ranges to interpolate versus ranges to
simulate

(6) Select interpolation method (Shephard, 4-pt)

(7) Select simulation method (conditional, unconditional; using
Fourier filter method for uncondl simulation of
scale-dependent Fractional Brownian surfaces)

(8) Select a method to merge scales
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Variogram method for function graphs
PROPOSITION 9 (Variogram method for estimation of box dimension

of graph of a real function): Let f : R → R be a continuous and
self-affine function. Assume existence of the autocorrelation function
C of f . Then there is a real numberc > 0, such that

γ(h) = C(0) − C(h) ≈ c h4−2s (22)

anddimB(graphf) = s.

If Hoelder conditions are satisfied, the box dimension off may be
calculated according to

dimB(graph f) = s ≈ 2−
1

2

log(γ(h))

log(h)
+

c

log(h)
≈ 2−

1

2
lim
h→0

log(γ(h))

log(h)
(23)

which may be estimated using linear regression.
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Variogram method in R3

REMARK 10 (Variogram method for estimation of box dimension for

surfaces in R3): Let (x, y)ǫD ⊆ R2, f : D → R an (elevation)
function, andS = {(x, y, z)|(x, y)ǫD andz = f(x, y)}. Let
d : R2 → R denote distance according to theL2-norm. Assume
dimB(S) = dimB(S ∩ T ) + 1 for each intersection∅ 6= S ∩ T with a
planeT , and assume that the restrictionf |S∩T satisfies all the
conditions of Propositions 8 and 9 above.
Then the following approximations hold:

γ(d(h)) = C(0) − C(d(h)) ≈ cd(h)6−2s (24)

and

dimB(S) ≈ 3 −
1

2
lim

d(h)→0

log(γ(d(h)))

log(d(h))
(25)

which may be estimated using linear regression.
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Wiener-Kinchine Theorem
The Wiener-Kinchine theorem states that the power-spectral density is
the Fourier transform of the autocorrelation function:

C(h) ⇋ |Φ(p)|2 = ESP [f ](p) (32)

For two-dimensional functions, the Wiener-Kinchine theorem states

that the power-spectral density is the Fourier transform ofthe covari-

ance function.
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Fourier method for function graphs
PROPOSITION 11 (Fourier method for calculation of box dimension

for graph of a real function): Let f : R → R be a continuous and
self-affine function, assume existence of the autocorrelation functionC

of f . Let Φ(p) denote the Fourier transform off andESP the
power-spectral density. If

ESP [f ](p) = |Φ(p)|2 ∼
1

pβ
for someβǫR, (33)

then

β ≈ 5 − 2dimB(graph f) and dimB(graph f) ≈
5 − β

2
. (34)
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Pine Island Glacier — L2A GLAS
Data (2003)
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Conditional Simulation: Pine Island
Glacier
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Conditional Simulation: Pine Island
Glacier – Enlarged Subarea
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Gradient Map from Multi-Beam Data
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Histograms of Gradients
Objective: Investigate how well variability of surface slope is
captured in SB and MB (8beam) observations
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DEM (max. slope 2.9◦)
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(max. slope 4.9◦)
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Questions?
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Conclusions Multi-Beam -2
(A) Multi-Beam or only Single-Beam Lidar for ICESat-2?

(1) Multi-beam lidar observations will yield 3-dimensional
information on land and sea ice elevation

(2) Locally-known hi-res elevation captures gradient and directional
derivative distribution of the entire surface to 99.9 percentile

(3) Spatial statistical properties from swath data can be used to
extrapolate between ground tracks

→ With a MB system, ICESat-2 can meet and advance the “Decadal

Survey" objectives for cryospheric observation, change detection, mod-

eling and prediction.
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(B) Swath Mapper (16 Beams) — Split Beam (4 or 2 Beams)

(1) Swath Mapper

(a) Achieves superior spatial resolution and hence better
accuracy and more spatial information (as in (A)) (140m
gradient fields, 0.85m along-track sampling)

(b) More susceptible to cloud/ aerosol caused data loss, but
studies so far indicate good spatial data collection

(c) Instrument to date only tested on aircraft

(2) Split Beam

(a) Twice the track density as SB, with 140m offset data in 2o

rotated mode

(b) Cannot derive gradient fields with 140m grids, but
across-track slope locally, otherwise 4km gradient fields

(c) Split-beam technology with pulse-repetition lidar with specs
similar to GLAS
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